Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 39: 86-94, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945093

RESUMO

The energetic particle radiation environment on the International Space Station (ISS) includes both charged and neutral particles. Here, we make use of the unique capabilities of the Radiation Assessment Detector (ISS-RAD) to measure both of these components simultaneously. The Charged Particle Detector (CPD) is, despite its name, capable of measuring neutrons in the energy range from about 4 MeV to a few hundred MeV. Combined with data from the Fast Neutron Detector (FND) in the 0.2 to 8 MeV range, we present the first broad-spectrum measurements of the neutron environments in various locations within the ISS since an early Bonner-Ball experiment that was conducted before the Station was fully constructed. The data presented here span the time period from February 2016 to February 2022. In addition to presenting broad-spectrum neutron fluence measurements, we show correlations of the measured neutron dose equivalent with charged-particle dose rates. The ratio of charged-particle dose to neutron dose equivalent is found to be relatively stable within the ISS.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Nêutrons Rápidos , Astronave , Doses de Radiação , Monitoramento de Radiação/métodos , Nêutrons
2.
Life Sci Space Res (Amst) ; 22: 89-97, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31421853

RESUMO

We report the first long-term measurements of the radiation quality factor of energetic charged particles on the surface of Mars. The Radiation Assessment Detector (RAD) aboard the Mars Science Laboratory rover, also known as Curiosity, has been operating on Mars since 2012. RAD contains thin silicon detectors that record the ionization energy loss of energetic charged particles. The particles are dominantly galactic cosmic rays (GCRs) and the products of their interactions in the Martian atmosphere, with occasional contributions from solar energetic particles (SEPs). The quality factor on the surface of Mars is influenced by two factors: variations in the shielding provided by the atmosphere, and changes in the spectrum of the incident energetic particle flux due to the 11-year solar cycle. The two cannot be easily disentangled using the data alone, but insights can be gained from calculations and Monte Carlo simulations.


Assuntos
Marte , Monitoramento de Radiação/instrumentação , Meio Ambiente Extraterreno , Método de Monte Carlo , Monitoramento de Radiação/métodos
3.
Life Sci Space Res (Amst) ; 5: 6-12, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26177845

RESUMO

The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 µGy/day and a dose equivalent of 19±5 µSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 µGy/day and the dose equivalent rate is 30±10 µSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv.


Assuntos
Raios gama , Nêutrons , Doses de Radiação , Monitoramento de Radiação/métodos , Atividade Solar , Radiação Cósmica , Marte , Proteção Radiológica , Astronave
4.
Science ; 343(6169): 1247166, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324273

RESUMO

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced (3)He, (21)Ne, and (36)Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.


Assuntos
Radiação Cósmica , Evolução Planetária , Exobiologia , Meio Ambiente Extraterreno/química , Marte , Gases Nobres/análise , Biomarcadores/análise , Biomarcadores/química , Sedimentos Geológicos , Isótopos/análise , Isótopos/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Doses de Radiação , Datação Radiométrica , Propriedades de Superfície
5.
Science ; 340(6136): 1080-4, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23723233

RESUMO

The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.


Assuntos
Radiação Cósmica , Marte , Doses de Radiação , Voo Espacial , Humanos
6.
Phys Rev Lett ; 106(15): 151103, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568542

RESUMO

The small amount of heavy ions in the highly rarefied solar wind are sensitive tracers for plasma-physics processes, which are usually not accessible in the laboratory. We have analyzed differential streaming between heavy ions and protons in the solar wind at 1 AU. 3D velocity vector and magnetic field measurements from the Solar Wind Electron Proton Alpha Monitor and the Magnetometer aboard the Advanced Composition Explorer were used to reconstruct the ion-proton difference vector v(ip) = v(i) - v(p) from the 12 min 1D Solar Wind Ion Composition Spectrometer observations. We find that all 44 analyzed heavy ions flow along the interplanetary magnetic field at velocities which are smaller than, but comparable to, the local Alfvén speed C(A). The flow speeds of 35 of the 44 ion species lie within the range of ±0.15C(A) around 0.55C(A), the flow speed of He(2+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...